Preface

In 2005 we published a complete revision of Duus’ textbook of topical diagnosis in neurology, the first new edition since the death of its original author, Professor Peter Duus, in 1994. Feedback from readers was extremely positive and the book was translated into numerous languages, proving that the concept of this book was a successful one: combining an integrated presentation of basic neuroanatomy with the subject of neurological syndromes, including modern imaging techniques. In this regard we thank our neuroradiology colleagues, and especially Dr. Kueker, for providing us with images of very high quality.

In this fifth edition of “Duus,” we have preserved the remarkably effective didactic concept of the book, which particularly meets the needs of medical students. Modern medical curricula require integrative knowledge, and medical students should be taught how to apply theoretical knowledge in a clinical setting and, on the other hand, to recognize clinical symptoms by delving into their basic knowledge of neuroanatomy and neurophysiology. Our book fulfills these requirements and illustrates the importance of basic neuroanatomical knowledge for subsequent practical work, as it includes actual case studies. We have color-coded the section headings to enable readers to distinguish at a glance between neuroanatomical (blue) and clinical (green) material, without disrupting the thematic continuity of the text.

Although the book will be useful to advanced students, also physicians or neurobiologists interested in enriching their knowledge of neuroanatomy with basic information in neurology, or for revision of the basics of neuroanatomy will benefit even more from it.

This book does not pretend to be a textbook of clinical neurology. That would go beyond the scope of the book and also contradict the basic concept described above. First and foremost we want to demonstrate how, on the basis of theoretical anatomical knowledge and a good neurological examination, it is possible to localize a lesion in the nervous system and come to a decision on further diagnostic steps. The cause of a lesion is initially irrelevant for the primary topical diagnosis, and elucidation of the etiology takes place in a second stage. Our book contains a cursory overview of the major neurological disorders, and it is not intended to replace the systematic and comprehensive coverage offered by standard neurological textbooks.

We hope that this new “Duus,” like the earlier editions, will merit the appreciation of its audience, and we look forward to receiving readers’ comments in any form.

Professor M. Baehr
Professor M. Frotscher
Contents

1 | Elements of the Nervous System .. 2
Information Flow in the Nervous System .. 2
Functional Groups of Neurons .. 7
Neurons and Synapses ... 2
Functional Groups of Neurons .. 7
Neurons ... 2
Glial Cells .. 7
Synapses ... 4
Development of the Nervous System .. 8
Neurotransmitters and Receptors ... 7

2 | Somatosensory System ... 12
Peripheral Components of the Somatosensory System and Peripheral Regulatory Circuits ... 12
Peripheral Nerve, Dorsal Root Ganglion, Posterior Root 14
Peripheral Regulatory Circuits .. 18
Receptor Organs ... 12
Central Components of the Somatosensory System 24
Peripheral Nerve, Dorsal Root Ganglion, Posterior Root 14
Central Processing of Somatosensory Information 32
Peripheral Nerve, Dorsal Root Ganglion.. 14
Posterior and Anterior Spinocerebellar Tracts 25
Anterior Spinothalamic Tract ... 30
Other Afferent Tracts of the Spinal Cord .. 31
Other Afferent Tracts of the Spinal Cord .. 31
Central Components of the Somatosensory System 24
Central Processing of Somatosensory Information 32
Posterior and Anterior Spinocerebellar Tracts 25
Central Processing of Somatosensory Information 32
Posterior and Anterior Spinocerebellar Tracts 25

3 | Motor System .. 36
Central Components of the Motor System and Clinical Syndromes of Lesions Affecting Them .. 36
Motor Cortical Areas .. 36
Complex Clinical Syndromes due to Lesions of Specific Components of the Nervous System .. 45
Corticospinal Tract (Pyramidal Tract) ... 38
Spinal Cord Syndromes .. 45
Corticonuclear (Corticobulbar) Tract .. 39
Vascular Spinal Cord Syndromes ... 56
Other Central Components of the Motor System 39
Nerve Root Syndromes (Radicular Syndromes) 57
Lesions of Central Motor Pathways .. 41
Plexus Syndromes ... 62
Peripheral Components of the Motor System and Clinical Syndromes of Lesions Affecting Them .. 43
Peripheral Nerve Syndromes ... 67
Clinical Syndromes of Motor Unit Lesions 44
Syndromes of the Neuromuscular Junction and Muscle 72
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Brainstem</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Surface Anatomy of the Brainstem</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Medulla</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Pons</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Midbrain</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Cranial Nerves</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Origin, Components, and Functions</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Olfactory System (CN I)</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Visual System (CN II)</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Eye Movements (CN III, IV, and VI)</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Trigeminal Nerve (CN V)</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Facial Nerve (CN VII) and Nervus Intermedius</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Vestibulocochlear Nerve (CN VIII)—Cochlear Component and the Organ of Hearing</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Vestibulocochlear Nerve (CN VIII)—Vestibular Component and Vestibular System</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Vagal System (CN IX, X, and the Cranial Portion of XI)</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>Hypoglossal Nerve (CN XII)</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>Topographical Anatomy of the Brainstem</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>Internal Structure of the Brainstem</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>Brainstem Disorders</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Ischemic Brainstem Syndromes</td>
<td>145</td>
</tr>
<tr>
<td>5</td>
<td>Cerebellum</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>Surface Anatomy</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>Internal Structure</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>Cerebellar Cortex</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>Cerebellar Nuclei</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>Afferent and Efferent Projections of the Cerebellar Cortex and Nuclei</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>Connections of the Cerebellum with Other Parts of the Nervous System</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>Cerebellar Function and Cerebellar Syndromes</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>Vestibulocerebellum</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>Spinocerebellum</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>Cerebrocerebellum</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Cerebellar Disorders</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Cerebellar Ischemia and Hemorrhage</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Cerebellar Tumors</td>
<td>167</td>
</tr>
<tr>
<td>6</td>
<td>Diencephalon and Autonomic Nervous System</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>Location and Components of the Diencephalon</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>Thalamus</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>Nuclei</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>Position of the Thalamic Nuclei in Ascending and Descending Pathways</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>Functions of the Thalamus</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>Syndromes of Thalamic Lesions</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>Thalamic Vascular Syndromes</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Epithalamus</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Subthalamus</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>Hypothalamus</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>Location and Components</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>Hypothalamic Nuclei</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Afferent and Efferent Projections of the Hypothalamus</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Functions of the Hypothalamus</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>Peripheral Autonomic Nervous System</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>Fundamentals</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>Sympathetic Nervous System</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>Parasympathetic Nervous System</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>Autonomic Innervation and Functional Disturbances of Individual Organs</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Visceral and Referred Pain</td>
<td>199</td>
</tr>
</tbody>
</table>
7 | Limbic System ... 202

Anatomical Overview 202
Internal and External Connections 203

Major Components of the Limbic System 203
Hippocampus 203
Microanatomy of the Hippocampal Formation 203
Amygdala 205

Functions of the Limbic System 206
Types of Memory 206
Memory Dysfunction—the Amnestic Syndrome and Its Causes 208

8 | Basal Ganglia ... 214

Preliminary Remarks on Terminology 214

The Role of the Basal Ganglia in the Motor System: Phylogenetic Aspects 214

Components of the Basal Ganglia and Their Connections 215
Nuclei .. 215
Connections of the Basal Ganglia 217

Function and Dysfunction of the Basal Ganglia 219
Clinical Syndromes of Basal Ganglia Lesions 219

9 | Cerebrum ... 226

Development 226

Gross Anatomy and Subdivision of the Cerebrum 228
Gyri and Sulci 228

Histological Organization of the Cerebral Cortex 231
Laminar Architecture 231

Cerebral White Matter .. 235
Projection Fibers 235

Association Fibers 236
Commissural Fibers 238

Functional Localization in the Cerebral Cortex 238
Primary Cortical Fields 239
Association Areas 247
Frontal Lobe .. 248
Higher Cortical Functions and Their Impairment by Cortical Lesions 248

10 | Coverings of the Brain and Spinal Cord; Cerebrospinal Fluid and Ventricular System ... 260

Coverings of the Brain and Spinal Cord 260
Dura Mater ... 260
Arachnoid ... 262
Pia Mater ... 262

Cerebrospinal Fluid and Ventricular System 263
Structure of the Ventricular System 263
Cerebrospinal Fluid Circulation and Resorption 263
Disturbances of Cerebrospinal Fluid Circulation—Hydrocephalus 266

aus: Baehr, Topical Diagnosis in Neurology (ISBN 9783136128053) © 2012 Georg Thieme Verlag KG
11 Blood Supply and Vascular Disorders of the Central Nervous System

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arteries of the Brain</td>
<td>270</td>
</tr>
<tr>
<td>Extradural Course of the Arteries of the Brain</td>
<td>270</td>
</tr>
<tr>
<td>Arteries of the Anterior and Middle Cranial Fossae</td>
<td>273</td>
</tr>
<tr>
<td>Arteries of the Posterior Fossa</td>
<td>275</td>
</tr>
<tr>
<td>Collateral Circulation in the Brain</td>
<td>278</td>
</tr>
<tr>
<td>Veins of the Brain</td>
<td>279</td>
</tr>
<tr>
<td>Superficial and Deep Veins of the Brain</td>
<td>279</td>
</tr>
<tr>
<td>Dural Sinuses</td>
<td>280</td>
</tr>
<tr>
<td>Blood Supply of the Spinal Cord</td>
<td>281</td>
</tr>
<tr>
<td>Arterial Anastomotic Network</td>
<td>281</td>
</tr>
<tr>
<td>Venous Drainage</td>
<td>283</td>
</tr>
<tr>
<td>Cerebral Ischemia</td>
<td>283</td>
</tr>
<tr>
<td>Arterial Hypoperfusion</td>
<td>283</td>
</tr>
<tr>
<td>Particular Cerebrovascular Syndromes</td>
<td>295</td>
</tr>
<tr>
<td>Impaired Venous Drainage from the Brain</td>
<td>302</td>
</tr>
<tr>
<td>Intracranial Hemorrhage</td>
<td>305</td>
</tr>
<tr>
<td>Intracerebral Hemorrhage (Nontraumatic)</td>
<td>305</td>
</tr>
<tr>
<td>Subarachnoid Hemorrhage</td>
<td>307</td>
</tr>
<tr>
<td>Subdural and Epidural Hematoma</td>
<td>311</td>
</tr>
<tr>
<td>Vascular Syndromes of the Spinal Cord</td>
<td>312</td>
</tr>
<tr>
<td>Arterial Hypoperfusion</td>
<td>312</td>
</tr>
<tr>
<td>Impaired Venous Drainage</td>
<td>312</td>
</tr>
<tr>
<td>Spinal Cord Hemorrhage and Hematoma</td>
<td>314</td>
</tr>
</tbody>
</table>

Further Reading

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>319</td>
</tr>
</tbody>
</table>
Lesions of the anterior spinothalamic tract. As explained above, the central fibers of the first neurons of this tract ascend a variable distance in the ipsilateral posterior columns, giving off collaterals along the way to the second neurons, whose fibers then cross the midline and ascend further in the contralateral anterior spinothalamic tract. It follows that a lesion of this tract at a lumbar or thoracic level generally causes minimal or no impairment of touch, because many ascending impulses can circumvent the lesion by way of the ipsilateral portion of the pathway. A lesion of the anterior spinothalamic tract at a cervical level, however, will produce mild hypesthesia of the contralateral lower limb.

Lateral Spinothalamic Tract

The free nerve endings of the skin are the peripheral receptors for noxious and thermal stimuli. These endings constitute the end organs of thin group A fibers and of nearly unmyelinated group C fibers that are, in turn, the peripheral processes of pseudounipolar neurons in the spinal ganglia. The central processes pass in the lateral portion of the posterior roots into the spinal cord and then divide longitudinally into short collaterals that terminate within one or two segments in the substantia gelatinosa, making synaptic contact with funicular neurons (second neurons) whose processes form the lateral spinothalamic tract (Fig. 2.16d, p. 26). These processes cross the midline in the anterior spinal commissure before ascending in the contralateral lateral funiculus to the thalamus. Like the posterior columns, the lateral spinothalamic tract is somatotopically organized; here, however, the fibers from the lower limb lie laterally, while those from the trunk and upper limb lie more medially (Fig. 2.20).

The fibers mediating pain and temperature sensation lie so close to each other that they cannot be anatomically separated. Lesions of the lateral spinothalamic tract thus impair both sensory modalities, though not always to the same degree.

Central continuation of the lateral spinothalamic tract. The fibers of the lateral spinothalamic tract travel up through the brainstem together with those of the medial lemniscus in the spinal lemniscus, which terminates in the ventral posterolateral nucleus of the thalamus (VPL, pp. 172, 173; see Fig. 6.4, p. 174, and Fig. 2.19). The third neurons in the VPL project via the thalamocortical tract to the postcentral gyrus in the parietal lobe (Fig. 2.19). Pain and temperature are perceived in a rough manner in the thalamus, but finer distinctions are not made until the impulses reach the cerebral cortex.

Lesions of the lateral spinothalamic tract. The lateral spinothalamic tract is the main pathway for...
pain and temperature sensation. It can be neurosurgically transected to relieve pain (cordotomy); this operation is much less commonly performed today than in the past, because it has been supplanted by less invasive methods and also because the relief it provides is often only temporary. The latter phenomenon, long recognized in clinical experience, suggests that pain-related impulses might also ascend the spinal cord along other routes, e.g., in spinospinal neurons belonging to the fasciculus proprius.

If the lateral spinothalamic tract is transected in the ventral portion of the spinal cord, pain and temperature sensation are deficient on the opposite side one or two segments below the level of the lesion, while the sense of touch is preserved (dissociated sensory deficit).

Other Afferent Tracts of the Spinal Cord

In addition to the spinocerebellar and spinothalamic tracts discussed above, the spinal cord contains yet other fiber pathways ascending to various target structures in the brainstem and deep subcortical nuclei. These pathways, which originate in the dorsal horn of the spinal cord (second afferent neuron) and ascend in its anterolateral funiculus, include the spinoreticular, spinotectal, spinovestibular, and spinovestibular tracts. The spinovestibular tract is found in the cervical spinal cord, from C4 upward, in the area of the (descending) vestibulospinal tract and is probably a collateral pathway of the posterior spinocerebellar tract.

Figure 2.20 is a schematic drawing of the various sensory (ascending) tracts, as seen in a cross section of the spinal cord. The motor (descending) tracts are also indicated, so that the spatial relationships between the various tracts can be appreciated. Finally, in addition to the ascending and descending tracts, the spinal cord also contains a so-called intrinsic apparatus, consisting of neurons that project upward and downward over several spinal segments in the fasciculus proprius (Fig. 2.9, p. 20).
Central Processing of Somatosensory Information

Figure 2.17 traces all of the sensory pathways discussed above, in schematically simplified form and in spatial relation to one another, as they ascend from the posterior roots to their ultimate targets in the brain. The sensory third neurons in the thalamus send their axons through the posterior limb of the internal capsule (posterior to the pyramidal tract) to the primary somatosensory cortex, which is located in the postcentral gyrus (Brodmann cytoarchitectural areas 3a, 3b, 2, and 1). The third neurons that terminate here mediate superficial sensation, touch, pressure, pain, temperature, and (partly) proprioception (Fig. 2.19, p. 29).

Sensorimotor integration. In fact, not all of the sensory afferent fibers from the thalamus terminate in the somatosensory cortex; some terminate in the primary motor cortex of the precentral gyrus. Thus, the sensory and motor cortical fields overlap to some extent, so that the precentral and postcentral gyri are sometimes together designated the sensorimotor area. The integration of function occurring here enables incoming sensory information to be immediately converted to outgoing motor impulses in sensorimotor regulatory circuits, about which we will have more to say later. The descending pyramidal fibers emerging from these circuits generally terminate directly—without any intervening interneurons—on motor neurons in the anterior horn. Finally, even though their functions overlap, it should be remembered that the precentral gyrus remains almost entirely a motor area, and the postcentral gyrus remains almost entirely a (somato)sensory area.

Differentiation of somatosensory stimuli by their origin and quality. It has already been mentioned that somatosensory representation in the cerebral cortex is spatially segregated in somatotopic fashion: the inverted sensory homunculus has been encountered in Figure 2.19 and will be seen again in Figure 9.19, p. 240. But somatosensory representation in the cerebral cortex is also spatially segregated by modality: pain, temperature, and the other modalities are represented by distinct areas of the cortex.

Although the different sensory modalities are already spatially segregated in the thalamus, conscious differentiation among them requires the participation of the cerebral cortex. Higher functions, such as discrimination or the exact determination of the site of a stimulus, are cortex-dependent.

A unilateral lesion of the somatosensory cortex produces a subtotal impairment of the perception of noxious, thermal, and tactile stimuli on the opposite side of the body; contralateral discrimination and position sense, however, are totally lost, as they depend on an intact cortex.

Stereognosis. The recognition by touch of an object laid in the hand (stereognosis) is mediated not just by the primary sensory cortex, but also by association areas in the parietal lobe, in which the individual sensory features of the object, such as its size, shape, consistency, temperature, sharpness/dullness, softness/hardness, etc., can be integrated and compared with memories of earlier tactile experiences.

Astereognosis. Injury to an area in the inferior portion of the parietal lobe impairs the ability to recognize objects by touch with the contralateral hand. This is called astereognosis.

Somatosensory Deficits due to Lesions at Specific Sites along the Somatosensory Pathways

Figure 2.21 shows some typical sites of lesions along the somatosensory pathways; the corresponding sensory deficits are discussed below.

- A cortical or subcortical lesion in the sensorimotor area corresponding to the arm or leg (a and b, respectively, in Fig. 2.21) causes paresthesia (tingling, etc.) and numbness in the contralateral limb, which are more pronounced distally than proximally. An irritative lesion at this site can produce a sensory focal seizure when spontaneous (epileptic) discharge of the inflamed/damaged nerve cells occurs; because the motor cortex lies directly adjacent, there are often motor discharges as well (jacksonian
seizure, see textbooks of neurology for the classification of epileptic seizures).

- **A lesion of all sensory pathways below the thalamus** (c) eliminates all qualities of sensation on the opposite side of the body.

- If all somatosensory pathways are affected except the pathway for pain and temperature (d), there is hypesthesia on the opposite side of the body and face, but pain and temperature sensation are unimpaired.

- Conversely, a **lesion of the trigeminal lemniscus** and of the lateral spinothalamic tract (e) in the brainstem impairs pain and temperature sensation on the opposite side of the body and face, but does not impair other somatosensory modalities.

- If the **medial lemniscus and anterior spinothalamic tract** (f) are affected, all somatosensory modalities of the contralateral half of the body are impaired, except pain and temperature.

- **Lesions of the spinal nucleus and tract of the trigeminal nerve** and of the **lateral spinothalamic tract** (g) impair pain and temperature...
sensation on the ipsilateral half of the face and the contralateral half of the body.

- **Posterior column lesions (h)** cause loss of position and vibration sense, discrimination, etc., combined with ipsilateral ataxia (see Case Presentation 1).

- If the **posterior horn of the spinal cord** is affected by a lesion (i), ipsilateral pain and temperature sensation are lost, but other modalities remain intact (dissociated sensory deficit).

- A lesion affecting **multiple adjacent posterior roots (j)** causes radicular pain and paresthesiae, as well as impairment or loss of all sensory modalities in the affected area of the body, in addition to hypotonia or atonia, areflexia, and ataxia if the roots supply the upper or lower limb.

Case Presentation 1: Subacute Combined Degeneration

An 80-year-old woman was hospitalized because of marked shortness of breath with dyspnea. The patient reported that she had been suffering from an increasingly unsteady gait and burning sensations throughout her body for about a year and a half. The shortness of breath had developed in the previous month and had worsened dramatically in the past few weeks. The only previous disease reported by the patient was “stomach inflammation.”

On detailed examination by the admitting neurologist, the patient was in obviously poor condition, dehydrated and with marked dyspnea. Neurological examination revealed spastic tetraparesis, which was more marked in the legs, with increased intrinsic muscle reflexes despite the presence of obvious muscle atrophy, especially on the trunk. There was also evidence of severe spinal ataxia, severely disturbed position sense, and hypesthesia and hypalgesia that increased distally below about T8. Vibration sense in the legs was almost absent (pallanesthesia). The neurologist ordered pulmonary function tests because of the dyspnea, along with MRI of the cervical and thoracic spine because of the neurological abnormalities.

The pulmonary function tests revealed markedly diminished expiratory volume and reduced vital capacity. Blood gases confirmed global respiratory insufficiency with reduced O₂ and elevated CO₂ levels. Blood chemistry revealed a markedly reduced vitamin B₁₂ level, and vitamins B₆, C, D, and folic acid were also low. MRI of the cervical and thoracic spine showed marked signal enhancement in the posterior and anterolateral columns and also in the anterior horns (Fig. 2.22).

Discussion with her family physician revealed that the patient had known chronic atrophic gastritis with intrinsic factor deficiency but that she had obtained vitamin B₁₂ replacement therapy very irregularly in recent years. All of the findings together confirmed the diagnosis of advanced subacute combined degeneration, which involved not only the classical posterior and pyramidal tracts but also the anterior horns (quadriplegic syndrome).

The patient’s respiratory insufficiency was the result of paresis of the respiratory muscles (destruction of the innervating motor neurons). Because of the poor blood gases, the patient required controlled ventilation for several weeks. After correction of the dehydration, electrolyte disturbances, and hypovitaminosis, the patient recovered slowly and was transferred to a geriatric rehabilitation clinic 2 months following her initial hospitalization.

![Fig. 2.22 Advanced subacute degeneration (funicular myelosis) with symptoms of paraplegia. On MRI of the cervical spine (C6 level), signal enhancement is seen in the posterior and anterolateral columns. This appearance is typical of advanced funicular myelosis.](image)
thalami to the habenular nuclei, which emit efferent projections to the autonomic (salivatory) nuclei of the brainstem, thus playing an important role in nutritional intake.

The epiphysis (pineal gland) contains specialized cells, called pinealocytes. Calcium and magnesium salts are deposited in the epiphysis from approximately age 15 years onward, making this structure visible in plain radiographs of the skull (an important midline marker before the era of CT and MRI). Epiphyseal tumors in childhood sometimes cause precocious puberty; it is thus presumed that this organ inhibits sexual maturation in some way, and that the destruction of epiphyseal tissue can remove this inhibition. In lower vertebrates, the epiphysis is a light-sensitive organ that regulates circadian rhythms. In primates, light cannot penetrate the skull, but the epiphysis still indirectly receives visual input relating to the light–dark cycle. Afferent impulses travel from the retina to the suprachiasmatic nucleus of the hypothalamus, from which, in turn, further impulses are conducted to the intermediolateral nucleus and, via postganglionic fibers of the cervical sympathetic chain, to the epiphysis.

Subthalamus

Location and components. The subthalamus is found immediately caudal to the thalamus at an early stage of embryological development and then moves laterally as the brain develops. It comprises the subthalamic nucleus, part of the globus pallidus (cf. p. 217), and various fiber contingents that pass through it on their way to the thalamus, including the medial lemniscus, the spinothalamic tract, and the trigeminothalamic tract. All of these tracts terminate in the ventroposterior region of the thalamus (Fig. 6.4, p. 174). The substantia nigra and red nucleus border the subthalamus anteriorly and posteriorly. Fibers of the dentatothalamic tract travel in the prerubral field H1 of Forel to terminate in the ventro-oral posterior nucleus of the thalamus (a part of the ventral lateral nucleus, VL); fibers from the globus pallidus travel in the lenticular fasciculus (Forel’s fasciculus H2) to the ventro-oral anterior nucleus (another part of VL) and the ventral anterior nucleus (VA). These tracts are joined more rostrally by the ansa lenticularis. The subthalamus also contains the zona incerta, a rostral continuation of the midbrain reticular formation. The major connections of the putamen, pallidum, subthalamus, and thalamus are depicted in Fig. 6.7.

Function. The subthalamic nucleus (corpus Luysii) is, functionally speaking, a component of the basal ganglia and has reciprocal connections with the globus pallidus (p. 217). Lesions of the subthalamic nucleus produce contralateral hemiballism (p. 223 f.).

Hypothalamus

Location and Components

The hypothalamus (Fig. 6.8) is composed of gray matter in the walls of the third ventricle from the hypothalamic sulcus downward and in the floor of the third ventricle, as well as the infundibulum and the mamillary bodies. The posterior pituitary lobe, or neurohypophysis, is also considered part of the hypothalamus; this structure is, in a sense, the enlarged caudal end of the infundibulum. The anterior pituitary lobe, on the other hand, is not derived from the neuroectoderm at all, but rather
from Rathke’s pouch, an outcropping of the rostral end of the primitive alimentary tract. The two pituitary lobes, though adjacent to each other, are not functionally connected. Remnants of Rathke’s pouch in the sellar region can grow into tumors, e.g., craniopharyngioma.

The columns of the fornix, as they descend through the hypothalamus to the mamillary bodies on either side, divide the hypothalamus of each side into a **medial** and a **lateral segment** (Fig. 6.8). The lateral segment contains various groups of fibers, including the **medial forebrain bundle**, which runs from basal olfactory areas to the midbrain. It also contains the lateral tuberal nuclei (see p. 180).

The medial segment, in contrast, contains a number of more or less clearly distinguishable nuclei (Fig. 6.8a–c), which are divided into an **anterior (rostral)**, a **middle (tuberal)**, and a **posterior (mamillary) nuclear group**.

Hypothalamic Nuclei

Anterior nuclear group. The important members of this group are the **preoptic, supraoptic, and paraventricular nuclei** (Fig. 6.8). The latter two nuclei project, by way of the supraoptico-hypophyseal tract, to the neurohypophysis (see Figs. 6.10 and 6.11).
Middle nuclear group. The important members of this group are the infundibular nucleus, the tuberal nuclei, the dorsomedial nucleus, the ventromedial nucleus, and the lateral nucleus (or tuberomamillary nucleus) (Fig. 6.8).

Posterior nuclear group. This group includes the mamillary nuclei (the supramamillary nucleus, the mamillary nucleus, the intercalate nucleus, and others) and the posterior nucleus (Fig. 6.8). This area has been termed a dynamogenic zone (Hess), from which the autonomic nervous system can be immediately called into action, if necessary.

Afferent and Efferent Projections of the Hypothalamus

The neural connections of the hypothalamus (Figs. 6.9 and 6.10) are multifarious and complex. In order to carry out its function as the coordinating center of all autonomic processes in the body (p. 190), the hypothalamus must communicate via afferent and efferent pathways with very many different areas of the nervous system. Information from the outside world reaches it through visual, olfactory, and probably also auditory pathways. The presence of cortical afferents implies that the hypothalamus can also be influenced by higher centers. The major connections of the hypothalamus are to the cingulate gyrus and frontal lobe, the hippocampal formation, the thalamus, the basal ganglia, the brainstem, and the spinal cord.

Some of the more important afferent connections (Fig. 6.9) will be described in the following section.

Afferent Pathways

The medial forebrain bundle originates in the basal olfactory areas and the septal nuclei and runs as a chain of neurons through the hypothalamus (lateral area) until it arrives in the midbrain reticular formation. Along the way, it gives off collateral fibers to the preoptic nucleus, the dorsomedial nucleus, and the ventromedial nucleus. The medial forebrain bundle constitutes a reciprocal connection between olfactory and preoptic nuclear areas and the midbrain. It has olfacto-visceral and olfacto-somatic functions.

The striae terminales originate in the amygdala in the temporal lobe, then form an arch over the thalamus, terminating in the preoptic area and to
the anterior hypothalamic nuclei. These fiber bundles are thought to transmit olfactory information, as well as impulses relating to mood and drive.

The fornix transmits corticomamillary fibers originating in the hippocampus and subiculum and traveling to the mamillary body, with collaterals to the preoptic nucleus, the anterior nucleus of the thalamus, and the habenular nucleus. The fornix is an important pathway in the limbic system (p. 203). As it passes over the dorsal surface of the pulvinar, some of its fibers cross the midline to join the contralateral fornix (commissure of the fornices, psalterium).

At the level of the psalterium, the two fornices lie under the splenium of the corpus callosum, where they are usually not directly visible in an uncut brain specimen. Lesions in the area of the psalterium often affect both fornices, because these two thin structures are close together at this point. The serious functional deficits produced by bilateral limbic lesions are discussed below on p. 208 ff.

Ascending visceral impulses from the peripheral autonomic nervous system, and from the nucleus of the tractus solitarius (taste), reach the hypothalamus along various pathways: through relay nuclei in the brainstem reticular formation, from tegmental and interpeduncular nuclei, through reciprocal connections in the medial forebrain bundle, through the dorsal longitudinal fasciculus, and through the peduncle of the mamillary body (Figs. 6.9 and 6.10). Somatosensory information from the erogenous zones (genitalia and nipples) also reaches the hypothalamus by these pathways and induces autonomic reactions.

Finally, further afferent input comes to the hypothalamus from the medial nucleus of the thalamus, the orbitofrontal neocortex, and the globus pallidus.

Efferent Pathways

Efferent fibers to the brainstem. The most important efferent projections from the hypothalamus to the brainstem are the dorsal longitudinal fasciculus (of Schütz), which contains fibers traveling in both directions, and the medial forebrain bundle (Figs. 6.9 and 6.10). Hypothalamic impulses traveling in these pathways pass through multiple synaptic relays, mainly in the reticular formation, until they terminate in parasympathetic nuclei of the brain-
stem, including the oculomotor nucleus (miosis), the superior and inferior salivatory nuclei (lacrimation, salivation), and the dorsal nucleus of the vagus nerve. Other impulses travel to autonomic centers in the brainstem that coordinate circulatory, respiratory, and alimentary function (etc.), as well as to motor cranial nerve nuclei that play a role in eating and drinking: the motor nucleus of the trigeminal nerve (mastication), the nucleus of the facial nerve (facial expression), the nucleus ambiguus (swallowing), and the nucleus of the hypoglossal nerve (licking). Yet other impulses derived from the hypothalamus, relayed to the spinal cord through reticulospinal fibers, affect the activity of spinal neurons that participate in temperature regulation (shivering).

The mamillotegmental fasciculus (Fig. 6.10) runs from the mamillary body to the midbrain tegmentum, and then onward to the reticular formation.

The mamillothalamic tract (of Vicq d’Azyr) reciprocally connects the hypothalamus with the anterior nucleus of the thalamus, which, in turn, is reciprocally connected with the cingulate gyrus (Fig. 6.6). The anterior thalamic nucleus and the cingulate gyrus are important components of the limbic system. The main function of the limbic system is said to be the regulation of affective behavior so as to promote the survival of the individual and of the species (MacLean 1958; cf. p. 202).

The supraoptico-hypophyseal tract has already been mentioned as an efferent pathway to the neurohypophysis. Neurons in the supraoptic and paraventricular nuclei produce the hormones oxytocin and vasopressin (antidiuretic hormone), which are transported along the axons of the supraoptico-hypophyseal tract to the neurohypophysis, and are then released there, from the axon terminals, into the bloodstream (Figs. 6.10 and 6.11). The neurons in these nuclei are thus comparable to the hormone-producing cells of other organs, and are referred to as neurosecretory cells. Oxytocin and vasopressin mainly exert their effects on cells outside the nervous system: oxytocin induces con-
Index

Page numbers in *italics* refer to illustrations or tables

<table>
<thead>
<tr>
<th>A</th>
<th>internal carotid artery 273</th>
</tr>
</thead>
<tbody>
<tr>
<td>abasia 165, 166, 300</td>
<td>microaneurysms 305</td>
</tr>
<tr>
<td>abscess 264</td>
<td>mycotic 307</td>
</tr>
<tr>
<td>acetylcholine 7</td>
<td>posterior communicating artery</td>
</tr>
<tr>
<td></td>
<td>(PComm) 273</td>
</tr>
<tr>
<td></td>
<td>saccular (berry) 307</td>
</tr>
<tr>
<td></td>
<td>treatment 309</td>
</tr>
<tr>
<td></td>
<td>anhidrosis 191</td>
</tr>
<tr>
<td></td>
<td>anosmia 84</td>
</tr>
<tr>
<td></td>
<td>anosognosia 255, 297</td>
</tr>
<tr>
<td></td>
<td>ansa</td>
</tr>
<tr>
<td></td>
<td>cervicalis 63</td>
</tr>
<tr>
<td></td>
<td>lenticularis 178</td>
</tr>
<tr>
<td></td>
<td>anterograde transport 3, 4</td>
</tr>
<tr>
<td></td>
<td>anticoagulation 304</td>
</tr>
<tr>
<td></td>
<td>antiuretic hormone (ADH) 184, 185</td>
</tr>
<tr>
<td></td>
<td>syndrome of inappropriate ADH</td>
</tr>
<tr>
<td></td>
<td>secretion (SADH) 184–185</td>
</tr>
<tr>
<td></td>
<td>aorta 271, 283</td>
</tr>
<tr>
<td></td>
<td>aperture</td>
</tr>
<tr>
<td></td>
<td>lateral 75, 158, 159</td>
</tr>
<tr>
<td></td>
<td>median 75, 158</td>
</tr>
<tr>
<td></td>
<td>Broca 249–253</td>
</tr>
<tr>
<td></td>
<td>case presentation 250–251, 250–251</td>
</tr>
<tr>
<td></td>
<td>selective 253</td>
</tr>
<tr>
<td></td>
<td>sensory 118</td>
</tr>
<tr>
<td></td>
<td>types of 249</td>
</tr>
<tr>
<td></td>
<td>Wernicke 253</td>
</tr>
<tr>
<td></td>
<td>case presentation 252–253, 252</td>
</tr>
<tr>
<td></td>
<td>apoptosis 9</td>
</tr>
<tr>
<td></td>
<td>apraxia 254</td>
</tr>
<tr>
<td></td>
<td>construction 254, 297</td>
</tr>
<tr>
<td></td>
<td>motor 254</td>
</tr>
<tr>
<td></td>
<td>ideational 254</td>
</tr>
<tr>
<td></td>
<td>ideomotor 254</td>
</tr>
<tr>
<td></td>
<td>aqueduct 171</td>
</tr>
<tr>
<td></td>
<td>cerebrum 137, 217</td>
</tr>
<tr>
<td></td>
<td>arachnoid 261, 262, 284</td>
</tr>
<tr>
<td></td>
<td>granulations 266</td>
</tr>
<tr>
<td></td>
<td>archicerebellum 122–123, 159</td>
</tr>
<tr>
<td></td>
<td>archicortex 202, 203, 226–227, 231</td>
</tr>
<tr>
<td></td>
<td>area(s)</td>
</tr>
<tr>
<td></td>
<td>association 247–248, 247</td>
</tr>
<tr>
<td></td>
<td>multimodal 247–248</td>
</tr>
<tr>
<td></td>
<td>unimodal 247</td>
</tr>
<tr>
<td></td>
<td>auditory 117–118</td>
</tr>
<tr>
<td></td>
<td>Broca’s 248</td>
</tr>
<tr>
<td></td>
<td>infarct 250–251</td>
</tr>
<tr>
<td></td>
<td>calcaneus 86</td>
</tr>
<tr>
<td></td>
<td>entorhinal 202, 204, 205</td>
</tr>
<tr>
<td></td>
<td>olfactory 216</td>
</tr>
<tr>
<td></td>
<td>postrema 76, 143</td>
</tr>
<tr>
<td></td>
<td>prepiriform 83</td>
</tr>
<tr>
<td></td>
<td>pretectal 100</td>
</tr>
<tr>
<td>lesions 101</td>
<td></td>
</tr>
<tr>
<td>septal 82, 205</td>
<td></td>
</tr>
<tr>
<td>striate</td>
<td></td>
</tr>
<tr>
<td>inferior 85</td>
<td></td>
</tr>
<tr>
<td>superior 85</td>
<td></td>
</tr>
<tr>
<td>subcallosal 83, 230</td>
<td></td>
</tr>
<tr>
<td>vestibular 75, 76</td>
<td></td>
</tr>
<tr>
<td>Wernicke’s 248</td>
<td></td>
</tr>
<tr>
<td>areflexia 44</td>
<td></td>
</tr>
<tr>
<td>Argyll Robertson pupil 101</td>
<td></td>
</tr>
<tr>
<td>arteriovenous fistula 312–314</td>
<td></td>
</tr>
<tr>
<td>case presentation 313, 313</td>
<td></td>
</tr>
<tr>
<td>arteriovenous malformations 306</td>
<td></td>
</tr>
<tr>
<td>artery(ies)</td>
<td></td>
</tr>
<tr>
<td>Adamkiewicz’s 53, 283, 283</td>
<td></td>
</tr>
<tr>
<td>basilar 75, 145, 146, 271, 272, 272, 275, 276, 279</td>
<td></td>
</tr>
<tr>
<td>arteriosclerosis 155</td>
<td></td>
</tr>
<tr>
<td>occlusion 147, 148, 149, 152, 298</td>
<td></td>
</tr>
<tr>
<td>thrombolysis case presentation 293–294, 293, 294, 295</td>
<td></td>
</tr>
<tr>
<td>tip 276</td>
<td></td>
</tr>
<tr>
<td>aneurysm 308</td>
<td></td>
</tr>
<tr>
<td>calcarine 277, 299</td>
<td></td>
</tr>
<tr>
<td>carotid</td>
<td></td>
</tr>
<tr>
<td>common 270–271, 271, 283</td>
<td></td>
</tr>
<tr>
<td>external 271–272</td>
<td></td>
</tr>
<tr>
<td>internal (ICA) 89, 91, 270, 271–272, 272, 272, 273, 279</td>
<td></td>
</tr>
<tr>
<td>aneurysm 273</td>
<td></td>
</tr>
<tr>
<td>bifurcation, occlusion 296</td>
<td></td>
</tr>
<tr>
<td>dissection 192</td>
<td></td>
</tr>
<tr>
<td>stenosis 267, 290</td>
<td></td>
</tr>
<tr>
<td>cerebellar</td>
<td></td>
</tr>
<tr>
<td>inferior</td>
<td></td>
</tr>
<tr>
<td>anterior (AICA) 108, 145, 271, 272, 275–276, 276, 300</td>
<td></td>
</tr>
<tr>
<td>occlusion 147, 299–300</td>
<td></td>
</tr>
<tr>
<td>posterior (PICA) 108, 145, 146, 271, 272, 272, 275, 276, 299–300</td>
<td></td>
</tr>
<tr>
<td>superior (SCA) 91, 108, 145, 146, 271, 272, 272, 276, 279</td>
<td></td>
</tr>
<tr>
<td>occlusion 149, 300–301</td>
<td></td>
</tr>
<tr>
<td>cerebral</td>
<td></td>
</tr>
<tr>
<td>anterior (ACA) 91, 145, 271, 272, 272, 274–275, 274, 275, 279</td>
<td></td>
</tr>
<tr>
<td>infarct 290, 290, 291, 296, 297</td>
<td></td>
</tr>
<tr>
<td>middle (MCA) 145, 271, 272, 274, 274, 275, 279</td>
<td></td>
</tr>
<tr>
<td>infarct 256, 296</td>
<td></td>
</tr>
<tr>
<td>occlusion 296–297</td>
<td></td>
</tr>
<tr>
<td>thrombolysis case presentation 291, 292, 293</td>
<td></td>
</tr>
<tr>
<td>fetal origin 273</td>
<td></td>
</tr>
</tbody>
</table>
artery(ies)
cerebral
 posterior
 infarct 298–299
 occlusion 152, 153
 chiasmatic, superior 279
choroidal
 anterior 145, 272, 273–274, 274, 279
 ischemia 296
 posterior 145, 146
 lateral 274, 277, 298
 medial 277, 298
 occlusion 153, 298
circle of Willis 278–279, 279
 communicating 278
 anterior 274, 278, 279
 posterior 91, 145, 271, 272, 273, 278, 279
 emboli 296
facial 271
 Heubner's 275, 279
hypophyseal
 inferior 182
 superior 183, 279
hypothalamic 183
 intercostal, posterior 283
 labyrinthine 145, 272, 276
 occlusion 300
lingual 271
 mamillary 279
 maxillary 271
meningeal
 anterior 260
 middle 260–261
 posterior 260
 occipital 278
 occipitotemporal 277
 of Percheron 277, 299
 ophthalmic 91, 271, 273, 278, 279
 emboli 296
 paraventricular 279
 perforating, occlusion 155
 radicular
 anterior 283
 great (of Adamkiewicz) 53, 283, 283
 recurrent, of Heubner 275, 279
 segmental
 lumbar 282
 thoracic 282
spinal
 anterior 145, 146, 272, 275, 278–282, 282, 283
 syndrome 55, 55
 posterolateral 282, 282
 infarction 312
 subclavian 64, 271, 282
 occlusion 147
 sulco-commissural 281–282, 282
 supraoptic 182, 279
 temporal, superficial 271
 thalamogeniculate 277
 ischemia 299
 thalamoperforating
 anterior 277, 299
 infarction 299
 posterior 274, 277, 279, 299
 thyroid, superior 271
 vertebral 108, 145, 146, 270, 271,
 272–273, 272, 275, 282, 283
 occlusion 147, 150
 artherosclerosis, uncoarterybral 58
 asomatognosia 255
 astasia 165, 166, 300
 thalamic 177
 astereognosis 29, 32, 255
 astrocytes 8
 astrocystoma 167
 cystic 167
 ataxia 300
 Friedreich 49
 gait 166
 limb 307
 stance 166
 truncal 165
 athetosis 219
 atrophy, multiple system 220
 attention disturbances 176
 audiometry 119
 auditory perception 113
 axonal transport 3
 axons 2–3
 myelination 3–4

B

Babinski sign 41, 48, 49
Balint syndrome 255
 ballism 219, 223
 band of Baillarger
 external 231, 232
 internal 231, 232
 baroreceptors 12
 barrels, cortical 235
 basket cells 7, 160, 232
 basophil cells 185
 bedwetting 198
 behavior control 255–257
 Bell palsy 112
 Benedikt syndrome 152–153, 155
 benign paroxysmal positional vertigo
 (BPPV) 124–125
 Betz cells 37
 Bielschowsky test 93, 94
 Bing–Horton syndrome 108
 bladder
 dysfunction 195–198
 neurogenic 196–197
 nonneurogenic 197–198
 function 195
 innervation 193–195, 193, 194
 obstruction
 infraventricular 197
 neck 196
 blink reflex 102, 110
 blood pressure regulation 144, 184
 blood-CSF barrier 263

body

amygdaloid 83
 geniculate
 lateral 76, 76, 84–85, 85, 86, 87,
 96, 100, 118, 172, 173–174, 173,
 175, 204
 medial 76, 76, 117, 118, 172, 173–
 174, 173, 175
 Leyti 219–220
 mammillary 361, 171, 175, 178, 179,
 202, 216, 279
 peduncle 180
 restiform 162
 trapezoid 117, 118, 137, 139, 140–141
 bone
 petrous 89
 sphenoid 89
 bollaxis 264
 Bowman's gland 81
 brachialgia 25
 brachialgia paresthetic nocturna 67
 brachiofacial weakness 41–42
 brachium pontis 75
 brainstem
 anatomy 74–76, 76, 134–145, 134–137
 blood supply 145
 fiber connections 128, 139
 disorders 145–155
 infarct 95, 95, 97, 97, 146, 298
 subclavian steal syndrome 147
 vascular syndromes 302
 Broca aphasia 249–253
 case presentation 250–251, 250–251
 Broca's area 248–249
 infarct 250–251
 Brodmann's cytoarchitectural map
 233
 Brown–Séguard syndrome 49–50, 49, 56
 bulb
 end, of Krause 12–13, 13
 olfactory 81–82, 82, 83
 bundle
 macular 87
 medial forebrain 83, 84, 179, 180,
 180, 181, 190
 cacosmia 84
 CAG trinucleotide repeat, in Hunting-
 ton disease 221, 222
 Cajal–Retzius cells 272, 228, 231
 callosotomy 253
 canal
 carotid 82
 hypoglossal 82, 133, 134
 optic 82
 semicircular 115, 120
 canalolithiasis 125
 capsule
 external 236
 internal 28, 29, 38, 171, 216, 227,
 236
D

decussation
lemniscal 135
pyramidal 38, 39, 75, 76, 135, 139
superior cerebellar peduncles 137
tegmental 137
Deiters cells 115, 116
Dejerine syndrome 147, 150, 151
 case presentation 151
dementia 208
dendrites 2
dendritic spines 6
dermatomes 17, 17, 18, 200
sensory deficits 17, 18
development 8–9
cerebrum 226–227, 226, 228
déviation conjuguée 98
diabetes insipidus 184
diagonal band of Broca 83
diaphragm 69
diaphragma sellae 260
diencephalon 8, 170–172, 171
digital subtraction angiography (DSA)
 289, 290, 290, 291, 304, 309
diplopia 92, 92
disconnection syndromes 253–254
olfactory system 253
 visual system 253–254
disinhibition 6, 6
disk(s)
 intervertebral
 degeneration 58–62, 59
 herniation 57, 58, 59–61
 massive prolapse 61, 62
 protrusion 57, 60
 optic 87
 lesions 86
 tactile, of Merkel 13, 13
divergence of information transfer 6
dizziness 123–124
dopamine 7
double bouquet cells 232

Duchenne–Erb palsy 63
duct
 cochlear 114–115, 115, 116
 endolymphatic 115
 perilymphatic 115
dummybell tumors 56, 57
dura mater 260–261, 261, 284
 blood supply 260–261
 innervation 262
 orbital 262
 spinal 261
 arteriovenous fistula 312–314, 313

dysarthria 149, 249, 306
 scanning 167

dysarthrophonia 167
dysdiadochokinesia 166, 299
dysarthropenia 167
dysarthropathy 167
dysarthropy 167
dysautonomia 167
dysmetria 166, 299

dyslexia 249

dysphagia
 149

dyspraxia 167

dysport

E

ear 115
 inner 114–117
 middle 114
edema
cerebral 284
 vasogenic 302
Edinger–Westphal nucleus
 54

embolus 285, 295–299
 case presentation 209, 209–210
end bulbs of Krause 12–13, 13
endolymphatic duct
 cochlear 114–115, 115
 perilymphatic 115
epiphysis 260
epineurium

excitation 6, 7
excitatory postsynaptic potential (EPSP) 5
exercise-dependent weakness 72
exotropia 92
exterceptors 12
extinction phenomenon 255
eye innervation
 parasympathetic 102, 103, 194
 sympathetic 102, 103, 194
eye movements 89–102
 accommodation 99–101
 anatomical substrate 100–101,
 100
cheat 90, 94–99, 118
 anatomical basis 96
 reflex gaze movements 98–99
 convergence 99–101
 anatomical substrate 100–101, 100
 optokinetic nystagmus 98–99
 pupillary constriction 100
 smooth pursuit movements 98
 voluntary 98

F

falx cerebelli 260
falx cerebri 260, 281
fascia dentata 203, 204
fasciculus
 arcuate 235, 236, 237
 cuneatus (of Burdach) 26, 28, 31
 frontotemporal 236, 237
 gracilis (of Goll) 26, 28, 31
 lenticular 178
 longitudinal
 dorsal (of Schütz) 83, 137, 181,
 181, 190
 inferior 237, 237
 medial (MLF) 95–96, 96, 118, 121,
 122, 123, 135, 137, 138, 139, 142,
 164–165
 lesions 97, 150, 152
 superior 236–237, 237
 mamillotegmental 182
 occipital, vertical 237, 237
 occipitofrontal
 inferior 236, 237
 superior 237
 of Meynert 181
 olfactory 79
 optic 79
 proprius 20, 20
 semilunaris 41
 subthalamic 178
 thalamic 178
 uncinate (of Russell) 122, 160, 236,
 237, 237
 see also tract(s)
 fecal incontinence 198
 fecal retention 198
 fenestra
 cochleae 114, 115
 vestibuli 114, 115
gyrus(i)
 precentral 36, 36, 37, 230
 rectus 230
 semilunar 82, 83
 temporal
 inferior 230
 superior 231
 transverse, of Heschl 117, 118, 231

H

habenula 177
hair cells 115, 116, 118, 120–121
headache 302, 304, 308
cluster 168
occipital 306
hearing 113–119
diagnostic evaluation 119
disorders 119–120, 126
heart
innervation 191, 194
referred pain 199
regulation 184
helicotrema 115, 115, 116
hemangioblastoma 167
hematoma
epidural 311, 312, 314
removal 306, 311
spinal cord 314
subdural 311, 311
hematomyelia 47, 314
hemianesthesia 244, 299, 300
hemianopic light reflex test 88
hemianopia 245
binaural 86
bitemporal 86
homonymous 86, 88, 296, 297, 299
hemiataxia 177, 299
hemiballismus 178
case presentation 223, 223
hemiconitomy 285
hemihypesthesia 244, 296, 297
hemiparesis
bilateral 43
contralateral 43, 244, 296, 297, 299, 305
flaccid 43, 244
spastic 43, 244
hemiplegia
alternating 147, 148
spastic
contralateral 42–43, 148
ipsilateral 43
hemorrhage 305–311
basal ganglia 177, 305, 305
cerebellar 167, 306–307, 306
intracerebral 305–307
hypertensive 305–306
intraventricular rupture 305
nonhypertensive 306
septal nuclei 209
spinal cord 314
subarachnoid (SAH) 267, 267, 307–310, 309
diagnosis 308–309
grading 308, 309
rebleeding 310
see also hematoma
heparin 304
Hering’s law 94–95
herpes simplex encephalitis 209, 264
case presentation 209, 209–210
herpes zoster 46
oticus 112
Heubner’s artery 275, 279
hippocampus 202, 203–205, 204, 216, 227, 227
activation 205
connections 205
homunculus 28, 241
motor 36–37
horn
Ammon’s 203–205, 204
anter 135
anter horn cells 43, 123
inhibition by Renshaw cells 44
syndrome 48, 48
inferior 204, 216
posterior 24–25, 30, 217
lesions 34
syndrome 47, 47
Horner syndrome 63, 102, 104, 149,
191–192
causes 192
hourglass tumors 57
Huntington disease 221
case presentation 222, 222
hydrocephalus 266–268, 309
active 266–267
children 268
communicating 266
diagnosis 268
epidemiology 268
ex vacuo 267
hypersecretory 266
malresorptive 266
case presentation 267, 267
noncommunicating 266
normal pressure (NPH) 267
case presentation 265, 265
occlusive 266
treatment 268, 309
types of 266–267
hydromyelia 47
hypercolumns 245
hyperkinesia 219
choresiform 221
hyperosmia 84
hypermeglia 41
detrusor muscle 196
hypertension
arterial 286, 305
intracranial 268, 285, 296, 297, 305
treatment 305, 306
hyperthermia 184
hypertonia 92
hypokinesia 219, 220
hypomimia 221
hypophysis 171
hyporeflexia 167
hyposmia 84
hypothalamic–pituitary axis 185, 186
disturbances 185–186
hypothalamus 170, 171, 172, 178–188, 216
case presentation 180–183, 180, 181, 190
functions 184–185
nuclei 179–180, 179
hyposmia 184
hypothermia 184
infarction
brainstem 95, 95, 97, 146, 298
Broca’s area 250–251
cerebellar, case presentation 301, 301
cerebral artery 256, 290, 290, 291,
296–297, 298–299
embolic 285
hemodynamic 285–286
case presentation 287, 287
lacunar 286
case presentation 288, 288
midbrain 95, 95, 97, 97
pontine 154
oral region 155
septal nuclei 209
spinal cord 55, 55, 282, 312
subthalamic nucleus 223
territorial 285, 290, 291
thalamic 209
case presentation 211, 211, 300, 300
Wernicke’s area 252
see also ischemia
information flow 2
information processing 2, 2
infundibulum 178, 279
inhibition 6, 7
forward 6, 6
recurrent 6, 6
inhibitory postsynaptic potential (IPSP) 5
innervation 68, 69–71
eye
parasympathetic 102, 103
sympathetic 102, 103, 104
somatosensory 16–17
insula 29, 37, 216, 228, 231
interneuron(s) 20, 232
GABAergic 205
intervertebral disks see disks
testosterone innervation 194
intracranial hypertension 266–267, 285, 296, 297, 305
treatment 305, 306
see also hydrocephalus
intrafusal muscle fibers 13
ischemia
cerebellar 167
cerebral 283–289, 295–297
diagnosis 286–289
peripheral nerves 67
prolonged reversible ischemic neurological defect (PRIND) 284
spinal cord 55, 56
stroke 284
transient ischemic attack (TIA) 284, 290
see also infarction
isocortex 204, 231

J

jacksonian seizures 32–33, 42, 244

K

kainate receptors 7
kidney innervation 194
Klumpke palsy 63
Korsakoff syndrome 208

L

labyrinth 116, 120
lacrimal gland 112, 114, 189
innervation 194
lamina
basilar 116, 117, 118
tension regulation 119
medullary
external 171
internal 171
tectal 76, 171
terminalis 171
language 248–249
automatic 249
nonautomatic 249
see also aphasia
lemniscus
lateral 118, 137, 138, 139
lesions 151, 152, 153
lesions 33, 150, 151, 152, 153, 155
spinal 30, 33, 106
trigeminal 33, 106, 142
lateral 137
lesions 33
leukoaraiosis 286
Lewy bodies 219–220
ligament, spiral 116
ligand-gated ion channels 5
ligand-gated receptors 7
limbic system
anatomy 202–203
connections 203
functions 206–208
limen insulae 83
lingula 159, 161
lobe(s)
floucculonodular 122–123, 159, 159
frontal 228, 228, 229, 247, 248
occipital 97, 228, 228, 229
parietal 228, 228, 229, 247–248
temporal 228, 228, 229
locus ceruleus 137, 143
lung innervation 191
Lyme disease
lymphoma 52, 53

M

macules 87, 115, 121
saccular 115, 120–121
utricular 115, 120–121
magnetic resonance imaging (MRI) 289, 290, 290, 291, 303–304
functional (fMRI) 239, 243
magnetoencephalography 239
malleus 115
massa intermedia 171, 172, 180, 181
mechanoreceptors 12
Mechel’s cave 260
medulla 38, 74–75, 134, 135, 136–140
adrenal 191
syndromes 147, 149
medulloblastoma 167, 168
membrane
basilar 115, 116, 116
Reissner’s 115, 116, 116
tectorial 116, 118
tympanic 115
memory 206
dysfunction 208–209
episodic 206–207
explicit (declarative) 207
frontal-lobe-type functions 207–208
implicit (nondeclarative) 207
long-term (LTM) 206–208
subtypes 206–207
neural substrates 206
semantic 206–207
short-term (STM) 206
Squire’s taxonomy of 207–208
tests of 206
types of 206–208
Mendel–Bekhterev reflex 41
Ménière’s disease 119–120
meninges 260, 261
meningioma 57
meningitis
bacterial 264
fungal 264
tuberculous 264
viral 264
Merkel’s disks 13, 13
mesencephalon 80
mesocortex 202
metastases, drop 167
Meyer’s loop 87, 88
microaneurysms 305
microangiopathic leukoencephalopathy 286
microelectrode recording 238
microglial cells 8
microvascular decompression 107
micturition 193, 195
midbrain 75–76, 136, 137, 141–143
infarct 95, 97, 97
Millard–Gubler syndrome 147, 151
miosis 191
modiolus 116
monkey hand 67
monoplegia 43
motor end plate 44
motor system
central components 36–43
lesions 41–43
peripheral components 43–44
motor unit 44
multiple sclerosis 86, 88, 96
CSF findings 264
trigeminal neuralgia and 108
multiple system atrophy 220
muscle spindles 13, 41, 20–21
muscle tone 24
abnormalities 41, 219, 221
muscle(s)
abductor digiti quinti 70
abductor pollicis brevis 69
longus 70
adductor
brevis 71
longus 71
magnus 71
pollicis 70
anconeus 70
biceps brachii 60, 69
biceps femoris 71
brachialis 69
brachioradialis 60, 70
ciliary 100
constrictor pharyngeus 127
coracobrachialis 69
deltoid 69
detrusor 193, 195
areflexia 196
detrusor-sphincter dyssynergia 196
hyperreflexia 196
instability 196
digastric 108
dilator pupillae 103, 104
extensor carpi
radialis 70
ulnaris 70
extensor digiti quinti 70
extensor digitorum 70
brevis 61, 71
longus 71

index
pelvic floor 195
peroneal 71
peroneus
brevis 61
longus 61
piriformis 71
plantar, of the foot 71
pronator teres 60, 69
quadratus femoris 71
quadriiceps femoris 70
rectus
inferior 89, 90, 92
lateral 89, 92
pareisis 93
medial 89, 90, 92, 100, 101
pareisis 93
superior 89, 90, 92
rhomboids 69
sartorius 70
scalene 69
anterior 64
segment-indicating 58, 60, 61
semimembranosus 71
semityndinosus 71
serratus anterior 69
soleus 71
stapedius 114
sternocleidomastoid 132
sternothyroid 133
stilograms 134
stylopharyngeus 127
subpopulation 69
supinators 70
supraspinatus 69
syndrome 72
tarsal
inferior 104
superior 104
temporalis 105, 107
tension regulation 20–21, 22
tensor fasciae latae 71
tensor tympani 114
teres
major 69
minor 69
thenar 60
thyrohyoid 133
tibialis
anterior 61, 71
posterior 71
trapezius 132
triceps brachii 60, 70
triceps surae 61, 71
vastus
lateralis 61
medialis 61
see also sphincter
muscular dystrophies 72
myasthenia 72
gravis 72
myelitis 102
myelin sheath 3–4, 4
myelitis
parainfectious 51, 51
transverse 50
myopathy 72

N
nasal glands 112, 114
neglect 255
case presentation 256, 256
neocerebellum 159
neocortex 226–227, 227
nerve(s)
abducens (CN VI) 80, 81, 82, 89, 91, 96, 151
palsy 93, 94
accessory (CN XI) 75, 80, 81, 82, 122, 126, 131–132, 131
lesions 132
auricular
great 19, 63
posterior 109, 111
auriculotemporal 105, 106
axillary 19, 64, 66, 69
buccal 105
cardiac 191
cervical 19, 69
transverse 19, 63
cuneal 19
coccygeal 15, 65
cloheal 111, 117, 118
cranial 77–78, 77–82
nuclei 77, 78, 79
see also specific nerves
cutaneous
antebrachial
lateral 19
medial 19
posterior 19
brachial
medial 19
posterior 19
femoral
lateral 19, 65
posterior 19, 65
facial (CN VII) 80, 81, 82, 109–111, 109, 111
lesions 110–111, 111
motor component 109–111
palsy 43, 110–111, 110, 148
central 110
idiopathic 111, 112
femoral 19, 65, 66, 70
fibular 19
frontal 105
genitofemoral 19, 65
glossopharyngeal (CN IX) 75, 80, 81, 82, 112, 126–127, 127, 129–131, 189
branches 126
lesions 126–127
syndrome 126–127
gluteal
inferior 65, 66, 71
superior 65, 66, 71
hypogastric 198
hypoglossal (CN XII) 63, 75, 80, 81, 82, 132–134, 133, 135
lesions 134, 150
palsy 43, 134, 148, 150
splanchnic
greater 189, 191
lesser 189, 191
pelvic 189, 193, 193
subclavian 64
subcostal 63
subscapular 64
supraclavicular 19, 63
suprascapular 64, 69
sural 19
thoracic 19
long 64, 69
thoracodorsal 64, 69
tibial 65–66, 65, 66, 71
lesions 66
trigeminal (CN V) 17, 19, 33, 75, 80, 81, 82, 91, 103–109, 137, 146
lesions 33–34, 107–108
trochlear (CN IV) 76, 79, 81, 82, 89, 89, 90–91, 91, 142
nuclear lesion 95, 95
palsy 93, 94
tympanic 126
ulnar 19, 64, 66, 70
lesions 68
palsy 67, 68
vagus (CN X) 75, 80, 81, 82, 112, 122, 126, 127, 128–131, 129, 131, 189, 192
branches 128
lesions 128–129
vestibular 91, 111, 120, 122
vestibulocochlear (CN VIII) 80, 81, 82, 113–126
zygomatic 114
see also fiber(s); neuron(s)
nerve plexus see plexus
nerve roots 16, 57
accessory 131–132
cranial 131, 131
lesions 132
spinal 131, 132
cochlear 117
dorsal root entry zone (DREZ) 24
facial 109
oculomotor 155, 156
spinal 15–16, 15
anterior 14, 15, 44
posterior 14–15, 15, 16
syndromes 57–62
cervical 58–59, 59, 60
lumbar 59–62, 60, 61, 62
posterior 46, 46
trigeminal 106, 108, 154
unmyelinated portions 108
vestibular 117, 121
nervous system
autonomic 188–190
parasympathetic 184, 188, 189, 192–193, 194–195
hypothalamic control 188–190
sympathetic 184, 188, 189, 190–192, 194–195
anatomy 190, 191
hypothalamic control 188–190
lesions 191–192
nervus intermedius 78, 79, 80, 109, 111–112, 119, 189
nerve tube 8
neuralgia
Charlin 108
glossopharyngeal 127
idiopathic 107
neurinoma 57
neuroblasts 8
neuroborreliosis 264
neurodevelopment 8–9
neuroglia 235
neurohypophysis 171, 178, 179, 181, 182
neuroma, acoustic 120, 125–126, 167, 168
neuronal migration disorders 227
nerve(s) 2–4, 3
association 20
cellular proliferation 8
commissural 20
EE 246
EI 246
excitatory 6
funicular 20, 30
GABAergic 7
glutamatergic 7
growth of cellular processes 8
inhibitory 6
motor 20, 37–38
α 43, 123
γ 22–24, 22, 43, 123
static and dynamic 24
postganglionic 188
preganglionic 188
programmed cell death 9
pyramidal 37
see also fiber(s); interneuron(s);
nerve(s)
nervous system
neural migration 8
neuropathy, vestibular 125
neuropeptides 7
neurosecretion 185
neurophilis 264
neurotransmitters
excitatory 7
inhibitory 7
synaptic transmission 5
NMBA receptor 7
nociceptors 12
node of Ranvier 3
nodulus 159, 159, 161
norepinephrine 7
notch, preoccipital 229
nucleus(i)
neuron(s)
central, superior 143
cerebellar 160–162
cochlear 75, 77, 79, 135
dorsal 117, 118
lesions 149
ventral 117, 118
colloid
inferior 217
superior 137
cuneate 26, 27, 33, 77, 106, 135, 136, 138, 139
accessory 27, 135
Darkshevich’s 96–97, 96
dentate 122, 137, 139, 142, 161, 162, 163, 166, 174
Edinger–Westphal 77, 78, 90, 101, 103, 142
emboliform 122, 137, 142, 160–162, 161, 165, 175
facial 78, 109, 110, 111, 137
lesions 151, 152
fastigial 40, 122, 137, 160, 161, 165
globose 122, 137, 160–162, 161, 165
graicle 26, 27, 33, 77, 106, 135, 136, 138, 139
habenular 83, 171, 177–178, 205
globus pallidus 134, 135, 136, 137, 138
hypothalamic 143, 139, 140
dorsomedial 179, 180
infundibular 179, 180
lateral (tubermamillary) 180
mamillary 180
paraventricular 179, 179, 181, 184
posterior 179, 180
preoptic 179, 179
supraptic 179, 179, 181, 184
tuber 179, 180
ventromedial 179, 180, 180
intermediolateral 178, 191
interpeduncular 83
interstitial, of Cajal 96–97, 96, 122
lentiform/ventricular 37, 38, 217
mamillary body 171
mesencephalic 77, 79, 106, 127
oculomotor 77, 78, 89, 90, 91, 100, 137, 142
of Darkshevich 122
of Perls 90, 100, 101, 143
olivary 118, 136
accessory 138, 139
inferior 75, 135
superior 137
para-abducens 97
paraventricular 182
pontine 40, 137, 154, 161, 163
posterior commissure 96
prestitial 96
pretectal 103, 141
pulposus 58
raphe 217
dorsalis 143
magnus 143
pontis 143
red 40, 91, 122, 137, 138, 139, 141–142, 163, 163, 166, 217
syndrome of 152–153, 155
reticular
lateral 136
of the thalamus 171, 172
reticular formation 127
autonomic 144–145
salivatory
inferior 77, 78, 113, 114, 127, 130, 144
superior 77, 78, 112, 113, 114, 144
septal 209
lesions 212, 212
Stilling’s 26
subthalamic 171, 178, 215, 216, 217
infarct 223
suprachiasmatic 178
supraoptic 182
tegmental 40, 83
pedunculopontine 143
thalamic 171, 172–176, 173, 174, 175
antic 172, 173, 174, 175, 181, 203
centromedian 172, 173, 175, 176, 178, 217
dorsal 175
intermediate 175
medial 175, 206
oral 175
superficial 175
intralaminar 173, 176
lateral 172, 174, 175
dorsal 172, 173
posterior 172, 173
lesions 176–177
medial 174, 175
dorsal 173
nonspecific 173, 176
reticular 171, 172
specific 173–174
ventral 172, 174, 176
anterior (VA) 172, 173, 174, 176
intermediate (VI) 173
lateral (VL) 172, 173, 176
oral 174
posteralateral (VPL) 28, 30, 172, 173, 176
posteriormedial (VPM) 112, 172, 173, 176
thoracic 26, 31
tractus solitary 77, 79, 112, 113, 114, 127, 140
lesions 149
trigeminal 75, 103–107, 106, 127, 135, 137, 139, 140, 141
lesions 149, 152, 153
motor 77, 78, 106, 137, 141, 153
principal sensory 77, 79, 106, 127, 137, 141, 153
trochlear 77, 78, 89, 90
lesion 95, 95
vagal 75, 77, 78
dorsal 129, 130, 135, 140, 143, 149, 192
vestibular 75, 77, 79, 120, 121–123, 121, 137, 140, 141, 161
inferior (of Roller) 96, 121, 121, 137, 149
lateral (of Deiters) 40, 96, 121, 121, 137
lesions 149, 152
medial (of Schwalbe) 96, 121, 121, 137
superior (of Bekhterev) 96, 121, 121, 137
nutritional intake regulation 185
nystagmus 124, 149, 165, 300
complex 165
gaze-evoked 165
optokinetic 98–99
periodic alternating 165
rebound 165
O
obex 76
oculomotor disturbances 165
olfactory system 81–84, 227
disconnection 253
oligodendrocytes 3, 4, 8
olive 75, 135, 150, 161, 163
accessory 138
inferior 40, 76, 136, 139
lesions 138
ophthalmoplegia 94
external 94
internal 94
internuclear (INO) 95–96, 97
Oppenheim reflex 41
optic radiation (of Graftiot) 84–85, 86, 86, 100
lesions 88
optokinetic nystagmus 98–99
organ
of Corti 115, 116, 118
vestibular 160
osculiopsis 124
osmoreceptors 12
osteocondrosis 58
scleral 58–59
lumbar 59
oxtocin 182–183, 185
P
pain
perception 240
phantomy 242
referred 190–200
visceral 199
paleocerebellum 27, 159
paleocortex 202, 226–227, 231
palsy
abducens nerve 93, 94
accessory nerve 132
brachial plexus
lower (Klumpke) 63
upper (Duchenne–Erb) 63
bulbar, progressive 48
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>facial</td>
<td>110</td>
</tr>
<tr>
<td>idiopathic</td>
<td>110</td>
</tr>
<tr>
<td>hypoglossal</td>
<td>112</td>
</tr>
<tr>
<td>median</td>
<td>67</td>
</tr>
<tr>
<td>oculomotor</td>
<td>93</td>
</tr>
<tr>
<td>peroneal</td>
<td>66</td>
</tr>
<tr>
<td>radial</td>
<td>67</td>
</tr>
<tr>
<td>supranuclear, progressive</td>
<td>220</td>
</tr>
<tr>
<td>tibial</td>
<td>66</td>
</tr>
<tr>
<td>tochlear</td>
<td>93, 94</td>
</tr>
<tr>
<td>vertical gaze palsy</td>
<td>176</td>
</tr>
<tr>
<td>Pancoast tumor</td>
<td>192</td>
</tr>
<tr>
<td>Pancreas innervation</td>
<td>194</td>
</tr>
<tr>
<td>panhypopituitarism</td>
<td>185</td>
</tr>
<tr>
<td>Papez circuit</td>
<td>203</td>
</tr>
<tr>
<td>papilledema</td>
<td>86, 167</td>
</tr>
<tr>
<td>paraplegia</td>
<td>43</td>
</tr>
<tr>
<td>parataxic</td>
<td>97</td>
</tr>
<tr>
<td>Parinaud syndrome</td>
<td>97</td>
</tr>
<tr>
<td>Parkinson disease</td>
<td>219–221</td>
</tr>
<tr>
<td>Parkinson-plus syndrome</td>
<td>220</td>
</tr>
<tr>
<td>Parkinsonism</td>
<td>219–221</td>
</tr>
<tr>
<td>paraplegia</td>
<td>43</td>
</tr>
<tr>
<td>Parasympathetic nervous</td>
<td>38–45</td>
</tr>
<tr>
<td>Parasympathetic nervous</td>
<td>86–91</td>
</tr>
<tr>
<td>Parasympathetic nervous</td>
<td>17</td>
</tr>
<tr>
<td>Parasympathetic nervous</td>
<td>75–76</td>
</tr>
<tr>
<td>Parasympathetic nervous</td>
<td>155</td>
</tr>
<tr>
<td>Parasympathetic nervous</td>
<td>154</td>
</tr>
<tr>
<td>Parasympathetic nervous</td>
<td>215</td>
</tr>
<tr>
<td>Parasympathetic nervous</td>
<td>38–45</td>
</tr>
<tr>
<td>Parasympathetic nervous</td>
<td>99–102</td>
</tr>
<tr>
<td>Parasympathetic nervous</td>
<td>101–102</td>
</tr>
</tbody>
</table>
| Parasympathetic ner...
radionuclide studies 289
ramus communicans gray 190, 191
white 190, 191
Rathke's pouch 179
rebound phenomenon 167
receptor organs 12–14
skin 12–13, 13
recess
infundibular 171
optic 171
rectum
emptying disorders 198
innervation 194, 198, 198
Redlich–Obersteiner zone 24
referred pain 199–200
reflex(es)
ankle-jerk 61
antagonist muscle relaxation 18–19, 21–22
biceps 23, 60
blink 102, 110
corneal 105
light test 92
crossed extensor 20
fixation 98
flight 19–20
gag 145
hemianopic light reflex test 88
intrinsic 18, 23
masseteric (jaw-jerk) 107
monsynaptic 18, 24
polyynaptic 19–20, 20, 21
proprioceptive 18
pupillary light reflex 84, 101
regulation 101–102
quadriiceps (knee-jerk) 21, 23, 61
sneeze 105
stapedius 110
suck 105–106
triceps 23, 60
triceps surae 23
vestibulo-ocular (VOR) 124, 165
viscerocutaneous 200, 200
reflex sympathetic dystrophy 67
Reissner's membrane 115, 116, 118
release-inhibiting factors 183, 183
releasing factors 183, 183
Renshaw cells 44
respiration 144
recticular formation 31, 39, 40, 83, 122, 127, 135, 137, 140, 143–145, 143, 149, 161, 163, 175
paramedian pontine (PPRF) 95
retina 84, 85, 87
retinopathy 245
retrobulbar neuritis 86
retrograde transport 3, 4
rhombencephalon 8
rib 64
cervical 64
rigidity 220
Rinne test 119
rods 84
Romberg sign 30, 46, 48, 49
Romberg test 166
roots see nerve roots
s
saccadic pursuit movements 165
saccule 115, 120
salivary glands 112, 114, 189
salivation 112
regulation 144
saltytor ady conduction 3
scala
media 115
tympani 115, 115, 116
vestibuli 115, 115, 116
scalene syndrome 63–64, 64
Schwann cells 3
Schwartz–Bartter syndrome 184–185
sciatica 61–62
seizures
epileptic 302
jacksonian 32–33, 42, 244
sella turcica
sensorimotor area 32
sensory conflict 124
sensory deficits
dissociated 31, 47
lesions along somatosensory pathways 32–34, 33
peripheral nerve lesions 18, 19, 67
radicular lesions 17, 18
septum pellucidum 171, 216
serotonin 7
receptor 7
Sherrington's law 95
single-photon emission computerized tomography (SPECT) 289
sinus(es) 280–281
sindurh 89, 281
squeamish 89
frontal 89
occipital 280
petrosal
inferior 281, 281
superior 91, 281
sagittal
inferior 280, 281
superior 261, 280, 280, 281, 303, 303
sigmoid 280, 281
sphenoid 89
sphenoparietal 281
straight 280, 280, 281
thromboses 302–304
case presentation 303, 303
transverse 280, 280, 281
skin
receptors 12–13, 13
segmental innervation 17
sensory deficits 17–18
peripheral nerve lesions 18, 19
radicular lesions 17, 18
sleep–wake cycle 144
sneeze reflex 105
social behavior control 255–257
soma 3
somatosensory system
central components 24–31
central processing 32–34
lesions 32–34, 33
peripheral components 12–24
speech 249
sphincter
anal 71
external 198, 198
internal 198
papilla 100, 103
urethral
external 193, 195
dysfunction 198
internal 193, 195
vesical 71
spinal automatisms 50
spinal cord 45
blood supply 281–283, 282, 283
arterial hypoperfusion 312
impaired venous drainage 312–314
compression 52, 52
cordotomy 32
hemorrhage 314
infarction 55, 55, 282, 312
syndromes 45–55
anterior spinal artery syndrome 55, 55
cauda equina syndrome 53, 54, 61, 62
conus syndrome 53, 54
epiconus syndrome 53, 54
hemisection syndrome 49–50, 49
transsection syndromes 50–53, 50
acute 50, 50
cervical 53
incomplete 51, 51
lumbar 53
progressive 52
thoracic 53
vascular 56–57, 312–314
tumors 56–57
epidural lymphoma 52, 52
extradural 56, 56
intradural extramedullary 56–57, 56
intradural intramedullary 56, 56, 57
venous drainage 283, 284
spinal shock 49, 50
spinocerebellum 159
functions 165
lesions 165–166
split-brain patients 253
spondylarthrosis 58
stapes 115
Steelie–Richardson–Olszewski syndrome 220
Steinert–Batten–Curschmann dystrophy 72
stereocilia 115, 116
stereognosis 32
stereotaxy 238
index
<table>
<thead>
<tr>
<th>System</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyramidal</td>
<td>214</td>
</tr>
<tr>
<td>Thoracolumbar</td>
<td>188</td>
</tr>
<tr>
<td>Vagal</td>
<td>126–132</td>
</tr>
<tr>
<td>Ventricular</td>
<td>262, 262</td>
</tr>
<tr>
<td>Vestibular</td>
<td>120, 124</td>
</tr>
<tr>
<td>Lesions</td>
<td>124–126</td>
</tr>
<tr>
<td>Visual</td>
<td>84–88, 233</td>
</tr>
<tr>
<td>Disconnection</td>
<td>253</td>
</tr>
</tbody>
</table>

T

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabes dorsalis</td>
<td>46–47</td>
</tr>
<tr>
<td>Tapetum</td>
<td>217</td>
</tr>
<tr>
<td>Taste</td>
<td>111–112, 130</td>
</tr>
<tr>
<td>Taste bud</td>
<td>113</td>
</tr>
<tr>
<td>Tectum</td>
<td>75–76, 141</td>
</tr>
<tr>
<td>Tegmentum</td>
<td>141–142</td>
</tr>
<tr>
<td>Pontine</td>
<td>140</td>
</tr>
<tr>
<td>Caudal, syndrome of</td>
<td>148, 152</td>
</tr>
<tr>
<td>Oral, syndrome of</td>
<td>149, 153</td>
</tr>
<tr>
<td>Tela choroidea</td>
<td>76, 171</td>
</tr>
<tr>
<td>Teleceptors</td>
<td>12</td>
</tr>
<tr>
<td>Telencephalon</td>
<td>8, 226</td>
</tr>
<tr>
<td>Temperature regulation</td>
<td>184</td>
</tr>
<tr>
<td>Tendinous ring</td>
<td>89</td>
</tr>
<tr>
<td>Tentorium</td>
<td>260, 281</td>
</tr>
<tr>
<td>Cerebelli</td>
<td>158</td>
</tr>
<tr>
<td>Tethered cord syndrome</td>
<td>197, 197</td>
</tr>
<tr>
<td>Thalamocortical reciprocity</td>
<td>233–236</td>
</tr>
<tr>
<td>Thalamicus</td>
<td>26, 28, 29, 33, 37, 38, 40, 161, 163, 170–177, 171, 215, 217, 218, 235</td>
</tr>
<tr>
<td>Blood supply</td>
<td>277</td>
</tr>
<tr>
<td>Functions</td>
<td>176</td>
</tr>
<tr>
<td>Infarction</td>
<td>209</td>
</tr>
<tr>
<td>Case presentation</td>
<td>211, 211, 300, 300</td>
</tr>
<tr>
<td>Nuclei</td>
<td>171, 172–176, 173, 174, 175</td>
</tr>
<tr>
<td>Lesions</td>
<td>176–177</td>
</tr>
<tr>
<td>Syndromes</td>
<td>176–177</td>
</tr>
<tr>
<td>Vascular</td>
<td>299</td>
</tr>
<tr>
<td>Thermoreceptors</td>
<td>12</td>
</tr>
<tr>
<td>Thoracolumbar system</td>
<td>188</td>
</tr>
<tr>
<td>Thrombolyis case presentation</td>
<td>Basilar artery 293–294, 293, 294, 295</td>
</tr>
<tr>
<td>Middle cerebral artery</td>
<td>291, 292, 293</td>
</tr>
<tr>
<td>Thromboses</td>
<td>302–304</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>302–304</td>
</tr>
<tr>
<td>Tic douloureux</td>
<td>107</td>
</tr>
<tr>
<td>Tonotopy</td>
<td>245</td>
</tr>
<tr>
<td>Tonsil, cerebellar</td>
<td>159</td>
</tr>
<tr>
<td>Tract(s)</td>
<td></td>
</tr>
</tbody>
</table>
tuberculum cinereum 75, 76
tumors
cerebellar 167–168
Pancoast 192
pituitary 186–188
case presentation 187, 187
spinal cord 56–57
dumbbell (hourglass) tumors 56, 57
epidural lymphoma 52, 52
extradural 56, 56
intradural, extramedullary 56–57, 56
intramedullary 56, 56, 57

tumors
cerebellar 167–168

U
ultrasonography 289
uncus 83, 230
urinary continence 195
see also incontinence
urinary urgency 196
utricle 115, 120
uvula 159, 161

V
vasodilation 191, 192
vasopressin (ADH) 182, 183, 184, 185
vasosperm 310
Water–Pacini corpuscles 12, 13–14, 13
vein(s) 279–281, 280
anastomotic
inferior (of Labbé) 279, 280
superior (of Trolard) 279, 280
basal (of Rosenthal) 279, 280
basivertebral 284
central, posterior 284
cerebral
anterior 280
great (of Galen) 217, 280, 280
internal 279, 280
middle
deep 280
superficial 279, 280
superior
dorsal 279, 280
middle 280
thromboses 302–304
cortical 279
intervertebral 284
jugular, internal 281
occipital, internal 280
of the septum pellucidum 280
ophthalmic
inferior 281
superior 281
radicular
anterior 284
posterior 284
spinal
anterior 284
posterior 284
postero-lateral 284
striate 280
sulcal 284
sulcomissural 284
thalamostriate 216, 280
vertebral 284
velum, medullary
anterior 137
superior 76, 146, 159
venous outflow obstruction
acute 302–304
chronic 304–305
ventricle
fourth 76, 135, 262, 263
floor 74–75, 76
roof 75, 135
lateral 86, 215, 216, 227, 262, 263
third 171, 262, 263
ventricular system 262, 263
vermis 122, 158
inferior 159
lesions 165
superior 158
vertigo 123–125
position 124–125
benign paroxysmal (BPPV) 124–125
central 125
proprioceptive 124

W
Wallenberg syndrome 147, 149, 150, 299
case presentation 150
wallerian degeneration 67
water balance 184–185
Weber syndrome 153, 156
Weber test 119
Wernicke aphasia 253
case presentation 252–253, 252
Wernicke’s area 248
infarct 252
white matter 235–237
Wilson disease 219
case presentation 224, 224
window
oval 114, 115
round 114, 115
Wisconsin Card Sorting Test 257
Word Fluency Test 257
wrist drop 67

Z
zona incerta 171, 178, 178
zones of Head 199, 199, 200